A coordinate system for triangles $(\alpha,\beta,\gamma)$
What’s the barycentric coordinate of $A$?
$$ \begin{align*}(\alpha,\beta,\gamma)&= (1,0,0)\\(x,y)&= \alpha A+\beta B+\gamma C\\&= A\end{align*} $$
Geometric viewpoint - proportional areas
$$ \alpha = \frac{A_A}{A_A+A_B+A_C}\\\beta = \frac{A_B}{A_A+A_B+A_C}\\\gamma = \frac{A_C}{A_A+A_B+A_C} $$
What’s the barycentric coordinate of the centroid?
$$ \begin{align*}(\alpha,\beta,\gamma)&= (\frac{1}{3},\frac{1}{3},\frac{1}{3})\\(x,y)&= \frac{1}{3}A+\frac{1}{3}B+\frac{1}{3}C\end{align*} $$
Barycentric Coordinates: Formulas
$$ \begin{align*}\alpha&= \frac{-(x-x_B)(y_C-y_B)+(y-y_B)(x_C-x_B)}{-(x_A-x_B)(y_C-yB)+(y_A-y_B)(x_C-x_B)}\\\beta&= \frac{-(x-x_C)(y_A-y_C)+(y-y_C)(x_A-x_C)}{-(x_B-x_C)(y_A-y_C)+(y_B-y_C)(x_A-x_C)}\\\gamma&= 1-\alpha-\beta\end{align*} $$
for each rasterized screen sample (x, y): // usually a pixel's center
(u, v) = evaluate texture coordinate at (x, y) // using barycentric coordinates!
texcolor = texture.sample(u, v);
set sample's color to texcolor; // Usually the diffuse albedo Kd (recall the Blinn-Phong reflectance model)