Last Lectures
- Viewing
- View + Projection + Viewport
- Rasterizing triangles
- Point-in-triangle test
- Aliasing
Today
- Antialiasing
- Sampling theory
- Antialiasing in practice
- Visibility / occlusion
Sampling is Ubiquitous in Computer Graphics
- Rasterization = Sample 2D Positions
- Photograph = Sample Image Sensor Plane
- Video = Sample Time
Sampling Artifacts in Computer Graphics
- Artifacts due to sampling - “Aliasing”
- Jaggies (Staircase Pattern) - sampling in space
- Moire 摩尔纹 - under-sampling images → Skip odd rows and columns
- Wagon wheel effect - sampling in time
- [Many more] ...
- Behind the Aliasing Artifacts
- Signals are changing too fast (high frequency), but sampled too slowly
Frequency Domain
Frequencies $cos2\pi fx$
Fourier Transform
- Represent a function as a weighted sum of sines and cosines → 任何一个周期函数,都能写成y一系列正弦和余弦函数的线性组合以及一个常数项
- 方波:
- $f(x) = \frac{A}{2}+\frac{2Acos(t\omega)}{\pi}$
- $f(x) = \frac{A}{2}+\frac{2Acos(t\omega)}{\pi}-\frac{2Acos(3t\omega)}{3\pi}$
- $f(x) = \frac{A}{2}+\frac{2Acos(t\omega)}{\pi}-\frac{2Acos(3t\omega)}{3\pi}+\frac{2Acos(5t\omega)}{5\pi}$
- $f(x) = \frac{A}{2}+\frac{2Acos(t\omega)}{\pi}-\frac{2Acos(3t\omega)}{3\pi}+\frac{2Acos(5t\omega)}{5\pi}-\frac{2Acos(7t\omega)}{7\pi}+...$
- Higher frequencies need faster sampling